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Abstract

SOFT HEAPS VISUALIZED

Shane McCann

B.S., Appalachian State University
M.S., Appalachian State University

Chairperson: Raghuveer Mohan, Ph.D.

The soft heap is an approximate priority queue data structure originally proposed by 

Bernard Chazelle [3]. Chazelle used it to develop the fastest deterministic algorithm to compute a 

minimum spanning tree of a connected graph [2]. The soft heap allows some items to become 

“corrupted”, in which their keys are artificially increased. This allows us to overcome the sorting 

lower bound in the comparison-based model of computation. However, some of the corrupted 

items exit the heap out of order. The number of corrupted items in the heap is upper-bounded by 

εm, where ε is an error rate determined by the user, and m is the number of insertions into the 

heap. This corruption allows soft heap operations to run in constant amortized time for a suitable 

ε = O(1), making it ideal for applications where speed is prioritized over precision. Such 

applications include finding an approximate median of a set of items, and in dynamic 

maintenance of percentiles [3].

Chazelle’s initial implementation of the soft heap uses a collection of binomial heaps. 

This was simplified in both implementation and analysis, by Kaplan and Zwick [10], and later 

by Kaplan, Zwick, and Tarjan [9], both of which use binary heap-ordered trees instead. In 

this thesis, we develop a visualization tool to visualize the soft heap implementation of Kaplan, 

Zwick, and Tarjan. We also visualize three applications in which soft heaps are used. Our 

web-based tool can be easily extended to make visualizations of other complex data structures 

and algorithms.

For completeness, we provide a new presentation of the implementation and the analysis 

of Kaplan, Zwick, and Tarjan’s soft heap data structure. We hope that our presentation, along 

with the visualization tool, makes complex data structures and algorithms more accessible to 

early (and intermediate) computer science students. Whereas existing implementations may

iv



corrupt items during both insertions and deletions, we provide a slight modification of the

delete-min operation, to include only single fillings, and thereby not corrupt any more items

during deletions in the soft heap. Thus, our modification allows the soft heap data structure to

be used as a black box, where corruption only comes from the insert operation, and ensures

that only at most εm total items (either in the heap or removed) are corrupted.
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Chapter 1

Introduction

Graphs are well-studied combinatorial objects that are comprised of nodes and connections

between pairs of nodes called edges. A spanning tree of a connected graph contains all nodes of

the graph, and a subset of the edges that allows one to travel from one node to another. Some

graphs are weighted, where each edge has some value associated with it that represents the cost

of traversing that edge. A minimum spanning tree (MST) is a spanning tree that minimizes

the total cost of all edges in the tree. MSTs are used in the design of networks and circuits to

find the least cost way of soldering digital components. Their application also extends to areas

like clustering, speech recognition, and image processing [8].

Two of the most popular algorithms for computing MSTs are Prim’s algorithm and

Kruskal’s algorithm. (See [8] for the history of the MST problem.) These algorithms require

a sorting step to sort the edges of the graph in O(m log n) time, where n is the number of

nodes, and m is the number of edges in the graph. The problem of sorting has a lower bound

of Ω(n log n) in the comparison-based model of computation. In an effort to overcome this

sorting bottleneck, Bernard Chazelle designed and used an approximate priority queue called

the soft heap [3]. This allowed Chazelle to compute an MST in O(mα(m,n)) time, where α is

the inverse Ackermann function, which grows very slowly and is nearly constant for all practical

purposes [2]. This is currently the fastest deterministic algorithm for computing an MST of

a connected graph in the comparison-based model of computation. The soft heap is designed

to sacrifice accuracy for the sake of efficiency by “corrupting” some items in the heap. Given

some error rate ε, the soft heap corrupts no more than εm items, where m is the total number

1
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of elements inserted into the heap [3].

Although soft heaps were designed with Chazelle’s MST algorithm in mind, there are

other useful applications. We can perform approximate sorting by inserting a sequence of items

into a soft heap. These items exit the soft heap nearly sorted. Soft heaps can also be used for

selection, where the goal is to return the kth smallest item from a list of items. Selecting the

median is often used as a black box in complex divide and conquer algorithms. The algorithm

to perform selection using a soft heap is friendlier than the classic deterministic algorithm of

Floyd and Rivest [6], and runs in linear time.

Soft heaps use elegant algorithm design techniques, which may be of interest to the data

structures enthusiast. In this thesis, we build a web application that visualizes the different

soft heap operations, as well as its applications in near-sorting, median-finding, and dynamic

percentile maintenance. Our web application is written to be easily extended to visualize other

advanced data structures like skew heaps [18], splay trees [17], Zip trees [19], B-trees [1], and

more. These visualizations help in forming an intuitive understanding of these data structures

and their applications, and may offer insights into some non-trivial academic results in the field.

1.1 Preliminaries

1.1.1 Priority Queues

A priority queue is a data structure that maintains a set of elements with associated priority, and

elements are removed in order of priority. We assume a min-priority queue, that is, the lower the

value of the key, the higher an element’s priority. Priority queues are often used to schedule tasks

(such as jobs in computing) and sort items, as well as a black box in more complex algorithms

like Dijkstra’s shortest path algorithm, or common algorithms for computing maximum flows

in graphs [8].

All priority queues support the following operations:

• insert(e, k): insert a new element e with key or priority k.

• delete-min: remove and return the element with minimum key.

Dijkstra’s shortest path algorithm also requires the decrease-key operation:
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• decrease-key(e, ∆k): given a pointer e to an element in the priority queue, decrease

its key by ∆k. Note that this increases e’s priority.

Some priority queues may also support:

• increase-key(e, ∆k): given a pointer e to an element in the priority queue, increase

its key by ∆k, thereby decreasing its priority.

• delete(e): Given a pointer to an element e in the queue, remove e.

• find-min: return an element with the minimum key.

Priority queues are commonly implemented as heap-ordered trees, which are recursively

defined as follows:

i. An empty tree is heap-ordered.

ii. A node x is heap-ordered if

a) the left and right subtrees of x are heap-ordered, and

b) x’s key is less than or equal to the keys of its children.

We refer to this as the heap-property. In the next sections, we discuss two common ways to

implement a priority queue using heap-ordered binary trees.

1.1.2 Binary Heaps

Binary heaps are nearly-complete binary trees, where each level of the tree is filled except for

the last level. They satisfy the heap property, which causes the minimum element to always be

at the root and gives us direct access to this element. A common way to implement a binary

heap is to encode it in an array. Elements of an array can be accessed in a tree-like fashion.

Given an element i in the array, you can access its parent by ⌊ i−1
2 ⌋, its left child by 2i+1, and

its right child by 2i + 2. Note that the array uses 0-based indexing, so the first element starts

at index 0 1.

In addition to priority queue operations, binary heaps use the following:

1There are alternate implementations that use 1-based indexing, in which the first element of the heap starts
at index 1. This allows us to store the number of elements in a valid heap at index 0.
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• sift-up(c): repeatedly swap element c with its parent until the heap property is sat-

isfied between element c and its parent

• sift-down(p): repeatedly swap element p with the child with the smallest key until

the heap property is satisfied between element p and its children

Both of these operations run in O(log n) time since they only span the height of the binary

heap. We can implement priority queue operations using both sift-up and sift-down in a

binary heap.

• insert(e): place a new element e at the end of the heap, then sift-up(e).

• delete-min: swap the root element and the last element e, then sift-down(e). The

number of elements in the heap decreases by one, so the last element in the array is no

longer part of the heap.

• decrease-key(e, ∆k): decrease element e’s key by ∆k, then sift-up(e).

• increase-key(e, ∆k): increase element e’s key by ∆k, then sift-down(e).

• delete(e): swap element e and the last element l, then call both sift-up(l), and

sift-down(l).

Since sift-up and sift-down both run in O(log n) time, all the priority queue operations

also run in only O(log n) time. For more details on binary heaps, please see popular textbooks

on algorithms, like [16] and [5].

1.1.3 Mergeable Heaps

Mergeable (or meldable) heaps are a class of heaps that support the merge operation. Given

two heaps H1 and H2, merge(H1,H2) combines both heaps into a single heap and destroys

H1 and H2 in the process. If heaps are implemented as binary heap-ordered trees, then we can

perform all priority queue operations in terms of merge.

• insert(e, H): create a single-element heap with e, then merge with heap H.

• delete-min: remove the root node, then merge its left and right subtrees.
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Figure 1.1: Recursive View of Merging Two Heaps

• find-min: return the root node.

• delete(e): decrease the key of e to−∞ so that it becomes the root, then call delete-min.

• decrease-key(e, ∆k): detach e and its subtree from its parent, decrease its key by

∆k, then merge the tree back into the heap.

• increase-key(e, ∆k): delete e then re-insert it with its key increased by ∆k.

To merge two heaps, take the smaller root between the two and make it the root of

the new heap. Then recursively merge the other heap into either the left subtree or the right

subtree of the root. Figure 1.1 shows this top-down recursive process, and Figure ?? shows

an example. There are several ways to choose which subtree to merge with, depending on

specific heap implementations. Augmenting each node of the tree with the heights or sizes of

their subtrees guarantees O(log n) time for merge by always recursing on subtrees with smaller

heights or sizes respectively.

The leftist heap is an example of a mergeable heap. It is implemented as a binary tree,

and its name is derived from the fact that each node is left-heavy – that is, the size of the
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(a) Two Heap-ordered Binary Trees (b) Both Trees Merged into One

Figure 1.2: An Example of Merging Two Heaps

left subtree of a node is at least as large as the size of its right subtree. A node in a leftist

heap is augmented with the size of its subtree [4]. Other implementations augment nodes with

the height of their subtree or with the shortest root-to-null path in their subtree [18] [11].

Should a node not be left-heavy, then we swap its children to maintain this property. When

merging leftist heaps, we can always merge into the right subtree of a node, since it is always

the smallest subtree. After merging, we fix any violations in the heap property by swapping

left and right subtrees of non-left heavy nodes along the insertion path of the newly inserted

element. Merging leftist heaps takes O(log n) time [4].

The skew heap [18] is another example of a mergeable heap, which guarantees O(log n)

amortized times for every priority queue operation without having the need to maintain aug-

mented information solely for the purposes of balancing. An operation is considered to run in

O(f(n)) amortized time if any sequence of k operations (starting from an empty heap) takes

O(kf(n)) time in the worst case. This is an upper bound over a sequence of operations, which

is no worse than the total time it takes to perform the same sequence of operations on a data

structure with worst-case guarantees. One can also think about amortized running times as

taking an average over a sequence of operations.
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1.2 The Soft Heap

The soft heap is a class of mergeable heaps. It supports delete-min and delete in O(log 1
ε )

amortized time, where ε is an error rate. All other operations run in only O(1) amortized

time. This does not violate the sorting lower bound. Given an error rate 0 ≤ ε ≤ O(1)
n , all soft

heap operations run in O(log n) amortized time as well, giving a runtime of O(n log n) to sort

n comparable elements. If ε = 1
O(1) , then soft heap operations run in O(1) amortized time,

though items come out only nearly-sorted.

There are a few different implementations of the soft heap: Bernard Chazelle’s original

design [3], Haim Kaplan and Uri Zwick’s simplification [10], and an updated version of their

simplified soft heap by Kaplan, Zwick, and Robert Tarjan [9]. This thesis discusses the imple-

mentation of the latter, as we find it more intuitive to implement and analyze, though we will

discuss key differences between the different versions in Chapter 2.

As mentioned before, the main feature that differentiates the soft heap from other heaps

is “corruption.” This corruption does not change the actual data inside the heap, but it does

change the order in which items come out of the heap. Corruption occurs by increasing the key

of some items through what Chazelle calls “carpooling.” Nodes in a soft heap are allowed to

contain multiple items. Nodes begin with a single item, but can acquire more items at certain

points during heap updates. This is determined by the error rate ε. Given an appropriate error

rate (say ε = 1
O(1)), the amortized time complexity of all operations is O(1), making them more

efficient than a standard priority queue. We will look at soft heap operations and corruption

in more detail in Chapter 2.

Our primary contribution in this thesis is the creation of a web-based visual tool that

can be used to visualize data structures and algorithms. Our web application is built using the

Vue.js front-end framework and Cytoscape.js for graph visualizations. We provide abstractions

of useful Cytoscape functions and common procedures involving Cytoscape in an effort to make

the development of new visualizations more friendly.

To demonstrate the visualization and how it can be used, we have implemented an an-

imated version of the soft heap. Users can perform the top-level soft heap operations insert,

find-min, and delete-min. The visualization animates the addition, movement, and se-
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lection of nodes and edges to give the user a dynamic representation of how the soft heap

operates. In addition to a general soft heap visualization, we have also created visualizations

of some applications discussed in Chapter 3.

We have implemented the soft heap in Java, C++, Python, and JavaScript. Users of

these implementations may use them as black boxes, such that only εm items become corrupted

in total. Our extensive testing suite consists of testing scripts for each language, as well as input

files that can be used to test any additional implementations. These are publicly available via

GitHub [12]. Most importantly, we have implemented the soft heap in TypeScript, the language

we use to power our visualization. The visualization is also publicly available in a separate

GitHub repository [13].

In addition to these contributions, we have also slightly modified existing implementa-

tions of the soft heap. This modification prevents additional corruptions from occurring during

deletions, which allows us to use the soft heap as a black box in larger algorithms.

The rest of the thesis is organized as follows. In Chapter 2, we will discuss the imple-

mentations of all the soft heap operations, as well as provide an analysis of their amortized

time complexities. For this, we present the analysis of Kaplan et al.’s soft heap [9], but hope

to make it more accessible. We also discuss our modification to prevent additional corruption

during delete. In Chapter 3, we discuss some applications of the soft heap data structure

to problems like near-sorting and selection. In Chapter 4, we discuss our visualization tool,

and how it can be extended to visualize other data structures and algorithms. We conclude in

Chapter 5 with a summary of our contributions and comment on future work.



Chapter 2

The Soft Heap

The soft heap data structure was first proposed by Chazelle [3]. This implementation uses

a collection of binomial trees [21]. Later, Kaplan and Zwick [10] simplified the soft heap

data structure by using only a collection of heap-ordered binary trees, which are easier to

implement. Slight modifications to this were made by Kaplan, Zwick and Tarjan [9], who also

simplified much of the analysis. In this chapter, we discuss this implementation, as well as

some differences between the three different versions. For completeness, we present the analysis

of Kaplan, Zwick, and Tarjan. To make a better distinction between the Kaplan and Zwick

implementation and the Kaplan, Zwick, and Tarjan implementation, we will refer to the former

as the KZ implementation, and the latter as the KZT implementation.

2.1 Structure

The soft heap consists of heap-ordered binary trees. A node x may have a left child, x.left,

and a right child, x.right, though one or both may be null. Each node has a rank, x.rank. The

rank of a node does not dynamically change as the soft heap changes. This has a notable effect

on deletions that we will discuss later. The root of each tree is connected in a singly-linked

list. We call this the root list. If a node x is a root node, x.next points to the next root in

the root list. Note that each tree in the root list has a unique rank, so there is only one tree

of a specific rank in the root list. Any operation that puts multiple trees on the root list with

equal ranks, then these trees are linked together to form a tree of higher rank. We describe

9
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Figure 2.1: A Soft Heap with Three Heap-ordered Binary Trees

this process in more detail later in the chapter. We sometimes use the words “root node” and

“tree” interchangeably to refer to either the root node, or the entire tree on the root list. A

simple example of a soft heap can be seen in Figure 2.1.

The root list is ordered depending on the operation being performed on the soft heap.

There are two possible orderings for the root list: findable order and meldable order. When the

root list is in findable order, it is ordered as follows: a tree x with rank r that has the minimum

key as its root, followed by all trees with ranks less than r in increasing order, followed by

all trees with ranks greater than r in findable order. This ordering is used when performing

find-min or delete-min. Since the first tree in the root list has the minimum key in findable

order, we can quickly find the node that contains the minimum key.

To perform insert and meld, we convert the root list into meldable order. Meldable

order contains a tree with the minimum rank, followed by the remaining trees in findable order.

By converting the root list to meldable order before melding or inserting, we can quickly resolve

any rank conflicts by linking two trees, x and y, of equal rank together: by making a new tree

z with z.rank = x.rank + 1.

The soft heap can quickly convert from meldable order to findable order by simply

swapping the first two trees if necessary. Let x be the tree with the smallest rank, and y be the

tree with minimum key. In findable order, y is the first tree on the root list, followed by x. In

meldable order, x is the first tree on the root list, followed by y. So swapping these trees allows
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(a) Heap 1 in Findable Order

(b) Heap 1 in Meldable Order

(c) Heap 2 in Findable Order

(d) Heap 2 in Meldable Order

Figure 2.2: Two Soft Heaps Shown in Findable and Meldable Orders
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us to change between meldable and findable orders. Note that no swap will be necessary if x is

the tree with the smallest rank as well as the minimum key. Examples of soft heaps in findable

and meldable orders can be seen in Figure 2.2.

In typical heaps and binary trees, a node holds just a single item. However, soft heap

nodes may contain multiple items. These items belong to a node x’s item list, x.set. Item lists

are implemented as circular singly-linked lists. The item list is represented by a canonical item,

which is the last item in the list, and therefore x.set could interchangeably refer to the item

list, or the last item on the list based on the context. If x.set points to the last item e, then

e.next points to the first item in the list. Implementing item lists in this way enables constant

time item movement by simply linking the end of one item list to the beginning of another.

Considering that nodes in a soft heap may contain multiple items, we need a way to maintain

heap-order. Each node x contains its own key, x.key, separate from the keys of the items in

the node, which assumes the value of the highest key in its item list. The structure of a single

node with multiple keys is shown in the figure below.

Figure 2.3: A Node x and its Data

When a node contains multiple items, we consider those items to be corrupted. As

a result of corruption, items exit the soft heap out of order when we perform delete-min.

Nodes accumulate multiple items during a filling operation, which moves items from a child

node to its parent node. Calling a fill operation on a node x moves the item list of the child

of x with the smallest key, say y, to x.set. This is done by concatenating y.set to x.set, and

x assumes the key of y. Then we recursively call fill on y. A second filling on x is done

if x.rank is greater than threshold t and x.rank is even. This is called double filling. The

threshold t is determined by the error rate ε, such that 0 ≤ ε ≤ 1, and t = ⌈log 3
ε⌉. An example
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Figure 2.4: A Soft Heap with a Corrupted Item with Key 0.

of a soft heap with corrupted items can be seen in Figure 2.4. The soft heap allows the number

of corrupted items to be at most εm, where m is the total number of insertions performed on

the heap.

Note that deletions may cause more items to become corrupted. Even for heaps with as

few as one hundred items, we found that over 90% of the items were corrupted with ε = 1
2 . These

implementations are not technically incorrect, as each one asserts that at most εm corrupted

items exist inside the heap. This does not include corrupted items that have already exited the

heap through delete-min.

We propose an implementation of the soft heap that performs extra fillings only during

insertions. Our implementation simply checks if the top-level operation being performed is an

insertion, and only performs an extra filling if that and the aforementioned criteria are true.

We find that the total number of corrupted items at any time (both in the heap and out of the

heap) is at most εm, allowing us to use the soft heap as a black box. Note that this does not

change the asymptotic complexities of all the operations, but increases the practical runtime

overhead of all operations during fillings by testing this extra check.
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2.2 Operations

The operation make-heap creates a single Null node of the soft heap. The Null node is a

node with the same attributes as a normal node in the soft heap, but we set both its rank

and its key to infinity, and all other attributes to the true null. Doing this simplifies condition

checking throughout other operations. For example, given nodes x and y, if we wanted to check

if x.rank > y.rank then {...}, that will be the single condition rather than if x ̸= null and

y ̸= null and x.rank > y.rank then {...}.

Algorithm 1: make-heap()

1 return Null

Once we call make-heap, we have a pointer to a soft heap. As mentioned earlier,

the soft heap is always kept in findable order. We can convert between findable order and

meldable order by swapping the first two trees in the root list. Specifically, we call rank-swap

to swap trees based on their ranks, to convert a soft heap in findable to meldable order, and

call key-swap to swap trees based on their keys, to convert a soft heap in meldable order

to findable order. Note that no trees are swapped if the tree containing the smallest key also

contains the smallest rank.

Algorithm 2: rank-swap(h)

1 x← h.next;
2 if h.rank ≤ x.rank then
3 return h
4 else
5 h.next← x.next;
6 x.next← h;
7 return x

8 end

We can think of insert as a wrapper function. Here, we toggle the inserting flag to

allow double-fillings to occur. Given an item e, make e into a single element soft heap, then

meld the new heap into the heap h. Before melding, heap h is converted into meldable order,

and after the meld, the result is converted back into findable order.
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Algorithm 3: key-swap(h)

1 x← h.next;
2 if h.key ≤ x.key then
3 return h
4 else
5 h.next← x.next;
6 x.next← h;
7 return x

8 end

Algorithm 4: insert(e, h)

1 inserting = True;
2 r ← make-root(e);
3 h← key-swap(meldable-insert(r, rank-swap(h)));
4 inserting = False;
5 return h

We use the make-root function to create a new root node. The new root holds just

the item passed to the function, and the node assumes the item’s key. Trees begin with a rank

of zero, and we point any node pointers to the Null node.

Algorithm 5: make-root(e)

1 x← new-node();
2 x.set← e;
3 e.next← e ▷ link e to itself to form a circularly linked list;
4 x.key ← e.key;
5 x.rank ← 0;
6 x.left← Null;
7 x.right← Null;
8 x.next← Null;
9 return x

Given tree x and tree h in meldable order, meldable-insert first checks if the rank

of x is less than the rank of h. If so, we simply point x.next to h, and return the resultant heap

in findable order. (See Figure 2.5.) If x.rank is not less than h.rank, we have a rank conflict.

Since tree x was just created with a single key, we know x.rank = 0. This must mean that

h.rank = 0 also, since we cannot have a node with negative rank. Since trees x and h have

equal ranks, we must link them to create a new tree. (See Figure 2.6.)

When linking two trees, we create a new root node, making both trees its children. The
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(a) The Heap Before Inserting (b) Inserting Item with Key 16

(c) Converting Heap to Meldable Order (d) No Rank Conflict, Perform key-swap

(e) The Heap with 16 Now Inserted (f) Findable Order is Restored

Figure 2.5: Inserting 16 into a Soft Heap
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Algorithm 6: meldable-insert(x, h)

1 if x.rank < h.rank then
2 x.next← key-swap(h);
3 return x

4 else
5 return meldable-insert(link(x, h), rank-swap(h.next))
6 end

rank of this node is one greater than the two children. The new node has no items yet, so we

fill it using defill. When inserting an item with the key of 5 into the final heap shown in

Figure 2.5, we can see a series of link operations being performed in the heap.

Algorithm 7: link(x, y)

1 z ← new-node();
2 z.set← null;
3 z.rank ← x.rank + 1;
4 z.left← x;
5 z.right← y;
6 defill(z);
7 return z

The fill and defill operations are most relevant to item corruption, and therefore

the key operations of the soft heap. They are mutually recursive functions, where defill

performs a single fill operation, then checks if it can do an extra filling. Given node x, call

fill on x. If we are inserting, and x.rank is even, and x.rank > t, perform an additional

fill operation on x again.

Algorithm 8: defill(x)

1 fill(x);
2 if inserting and x.rank > t and x.rank is even then
3 fill(x)
4 end

The fill operation performs the actual filling of a node. We choose to always fill a

node x with items from x.left. To ensure that x.left is the child with the minimum key, we

swap the left and right children if necessary. Node x then assumes the key of x.left, increasing

the key of x. Node x’s item list may be empty if its items may have filled its parent node. If

so, we simply set x.set to x.left.set. Otherwise, we need to concatenate x.left.set onto x.set.
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(a) Two Rank Zero Trees, x (Key 5) and y (Key
16), need to be Linked

(b) A New Root is Created, with x as its Left
Child and y as its Right Child

(c) The Root is Filled by the Left Child (d) The Previous Linking Causes Another
Rank Conflict

(e) Linking to Resolve the New Conflict
Causes Another Conflict

(f) A Final link is Performed
Leaving a Single-tree Heap

Figure 2.6: Inserting 5 Causes a Series of link Operations
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We can do this by swapping pointers so that x.set.next now points to x.left’s first item, and

x.left.set.next now points to x’s first item. Node x then assumes the key of x.left, thereby

corrupting the original items in its set that were present before the filling. Finally, we check if

x.left has a left child. If it does not, x.right becomes x.left. Otherwise, we recursively perform

defill on x.left. Figure 2.7 shows the steps of the fill operation, and Figure 2.8 shows the

result of a double-even filling.

Algorithm 9: fill(x)

1 if x.left.key > x.right.key then
2 x.left↔ x.right ▷ swap the left and right nodes
3 end
4 x.key ← x.left.key;
5 if x.set is empty then
6 x.set← x.left.set
7 else
8 x.set.next↔ x.left.set.next ▷ concatenate x and x.left items
9 end

10 x.left.set← Null;
11 if x.left.left = Null then
12 x.left← x.right;
13 x.right← Null

14 else
15 defill(x.left)
16 end

We can call find-min to get an item with minimum key. The soft heap is already in

findable order, so the root with minimum key is at the start of the root list. find-min can

return just the item, but we can also return the key of the root node. By returning both, we

can determine if the item has been corrupted by comparing the item’s key with the node’s key.

h.set.next is simply the first item in h’s item list, but any arbitrary item in the item list may

be returned.

Algorithm 10: find-min(h)

1 return (h.set.next, h.key)

To remove an item with minimum key, we use delete-min. Again, the soft heap is

already in findable order, so delete-min assumes the first tree has the minimum key. If there

are multiple items in the minimum root h, then we simply return the first item, removing it
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(a) Linking Two Rank-two Trees (b) The Root x is Filled by x.left

(c) Before Filling x.left, its Chil-
dren Swap to Maintain Heap Or-
der

(d) Node x.left is Filled

(e) Then x.left.left is Filled (f) The Leaf Node Cannot be
Filled, so it is Deleted

Figure 2.7: A Step-by-step Example of a fill Operation
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(a) Linking Two Rank-three Trees Creates a Single Rank-
four Tree

(b) A Single Filling is Performed, and Another One Be-
gins on the Root Node

(c) The Second Filling is Completed

Figure 2.8: An Example of a Double-even Filling
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by updating pointers in the item list. Otherwise, we have a singleton node. We empty h.set,

and store h.rank in k. If h has no children, the tree is now empty, and we set h = h.next. If

h does have children, we call defill on h. At this point, h now contains a different key, and

the soft heap may no longer be in findable order. To restore findable order, we need to reorder

the trees up to rank k, using the reorder operation.

Algorithm 11: delete-min(h)

1 e← h.set.next;
2 if e.next ̸= e then
3 h.set.next← e.next
4 else
5 h.set← null;
6 k ← h.rank;
7 if h.left = Null then
8 h = h.next
9 else

10 defill(h)
11 end
12 reorder(h, k)

13 end
14 return (e, h.key)

To reorder the trees and restore findable order, notice that all trees up to k are in

increasing order of ranks, and all trees after rank k are in findable order. Therefore, we only

need to traverse at most k + 1 trees to find the one with the smallest key and bring it back

to the front of the root list. One way to accomplish this is in a recursive procedure as follows.

We swap (using rank-swap) the first tree h with the next tree t in the root list if h’s rank is

smaller than t’s. Then we recursively restore the rest of the trees in findable order. Once out of

recursion, we have a pointer t to the first tree returned in findable order among the remaining

trees. We can then swap h with t if t’s key is smaller than h’s key (using key-swap). This

restores the findable order of all the trees on the root list. Unrolling the recursive process, we

are swapping h successively with all trees with ranks less than k. Then the minimum key is

either in h or h.next, and the tree with the minimum key is brought to the front. Then we

swap from back to front the tree with the smallest key, ensuring that the tree with the smallest

key is at the front of the root list. This ensures the findable order of trees. (See Figure 2.9.)

Finally, we have meld. Like insert, it can also be thought of as a wrapper function.
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(a) A Soft Heap Before a Call to delete-min. Item with Key 8 Will
be Deleted.

(b) The Item is Removed, Causing the Root of the First Tree to be
Filled. The First Tree Remains a Rank-two Tree.

(c) The Root List is Reordered by Swapping the First Tree to its
Correct Position by Rank

(d) Findable Order is Restored by Swapping the Tree with Minimum
Key to the Front

Figure 2.9: An Example of delete-min.
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Algorithm 12: reorder(h, k)

1 if h.next.rank < k then
2 h← rank-swap(h);
3 h.next← reorder(h.next, k)

4 end
5 return key-swap(h)

The meld operation converts both heaps to meldable order before melding, then converts the

newly melded heap to findable order. It uses the helper function meldable-meld to do the

actual melding before returning the root list back into findable order.

Algorithm 13: meld(h1, h2)

1 h1 ← rank-swap(h1);
2 h2 ← rank-swap(h2);
3 return key-swap(meldable-meld(h1, h2))

The meldable-meld function is given two nodes h1 and h2 as input, where h1 points

to the first tree on the first heap, and h2 points to the first tree on the second heap. Without

loss of generality, let h1 be the root with the smaller rank. If h2 is Null, then the result of the

merged heap is just h1. Otherwise, we recursively meld h1.next with h2, and get a pointer to

the first node h on the root list. We finally perform a single meldable-insert to insert a

single tree h1 into h.

Algorithm 14: meldable-meld(h1, h2)

1 if h1.rank > h2.rank then
2 h1 ↔ h2
3 end
4 if h2 = Null then
5 return h1
6 else
7 h← meldable-meld(rank-swap(h1.next), h2);
8 return meldable-insert(h1, h)

9 end
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2.3 Analysis

Let m be the total number of insertions made in the soft heap, and d be the total number of

deletions. (Specifically, the total number of calls to insert and delete-min, respectively.)

We let the error rate ε be 0 ≤ ε ≤ 1, and the threshold t = ⌈log 3
ε⌉. The analysis of the soft

heap data structure consists of two parts: (i) show that there are only εm corrupted or bad

items at any point in the heap, and (ii) show that delete-min takes O(log 1
ε ) amortized time,

while all other soft heap operations run in only O(1) amortized time. Both of these depend on

finding bounds on the number and size of a tree of rank k.

2.3.1 Bounds on the Number and Size of a Tree of Rank k

Lemma 1. The number of trees of rank k is at most m
2k
.

Proof. We can prove this by induction on k. As a base case, we have k = 0, and the number of

rank 0 trees is at most m
20

= m. This is trivially true, since there cannot be more than m trees

of rank 0. Now assume that the statement is true for any tree of rank less than k. Then the

number of trees with ranks k − 1 is at most m
2k−1 . Since we combine two trees of ranks k − 1

together to form a tree of rank k, we have only at most
m

2k−1

2 = m
2k

trees of rank k.

Lemma 2. Let s(k) denote the size (or the number of items) in a node of rank k. If k ≤ t,

then s(k) = 1. Otherwise, s(k) ≤ 2⌈(k−t)/2⌉.

Proof. Consider the case when k ≤ t. When a new node is formed with a single item, we have a

rank 0 node with only one item. A node of rank k is only filled when it is emptied, therefore we

only move items from a node of rank k− 1. By induction, since s(k− 1) = 1, we have s(k) = 1.

Now, consider the case when k > t. If k is odd, we only perform a single filling, and

therefore s(k) ≤ s(k − 1). When k is even, we perform a double filling, so s(k) ≤ 2s(k − 1). So

every two levels above the threshold t, the number of items in a node exponentially increases.

In general, we can express this as s(k) ≤ 2⌈(k−t)/2⌉, where k− t is the number of levels above the

threshold. Table 2.1 shows this exponential growth. More formally, one can prove the above

quantity by induction on k − t, which is the number of levels above t. We leave this formal

proof as an exercise for the reader.
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Rank k Upper Bound on s(k)

t + 8 16
t + 7 8
t + 6 8
t + 5 4
t + 4 4
t + 3 2
t + 2 2
t + 1 1
t 1

t - 1 1
t - 2 1

Table 2.1: The size of nodes with rank k relative to t, where t is even.

2.3.2 Bounds on The Number of Corrupted Items

Lemma 3. Let the rank of an item be defined as the rank of the node it belongs to. Then the

number of items with rank k > t is at most εm.

Proof. The number of items of any rank k > t is

∑
k>t

m

2k
· s(k)

Expanding the terms in the above summation and taking the sum to infinity gives

∑
k>t

m

2k
· s(k) ≤ m

[
s(t+ 1)

2t+1
+

s(t+ 2)

2t+2
+

s(t+ 3)

2t+3
+ ...

]
=

m

2t

[
s(t+ 1)

21
+

s(t+ 2)

22
+

s(t+ 3)

23
+ ...

]
.

We can generalize this summation again, this time differentiating between items of odd

and even ranks.

m

2t

∑
i≥1

(
s(t+ 2i− 1)

22i−1
+

s(t+ 2i)

22i

)
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We can simplify by calculating the size of even and odd ranks separately, since

s(t+ 2i− 1) ≤ 2⌈(t+2i−1−t)/2⌉ = 2⌈(2i−1)/2⌉ = 2(2i)/2 = 2i

s(t+ 2i) ≤ 2⌈(t+2i−t)/2⌉ = 2⌈(2i)/2⌉ = 2(2i)/2 = 2i

The size of an even rank is just twice that of the previous odd rank, so we multiply

the size of the odd rank by two to give the same denominator for both ranks, allowing us to

combine them into a single quantity. So we get

∑
k>t

m

2k
· s(k) ≤ m

2t

∑
i≥1

(
2i

22i−1
+

2i

22i

)
=

m

2t

∑
i≥1

(
1

22i−1
+

1

22i

)
· 2i

=
m

2t

∑
i≥1

2 + 1

22i
· 2i

=
m

2t

∑
i≥1

3

2i

=
3m

2t

∑
i≥1

1

2i
.

It is well known that the geometric series
∑

i≥1
1
2i

solves to 1. So, we have

∑
k>t

m

2k
· s(k) ≤ 3m

2t

Replacing t with log 3
ε , we get

3m

2t
=

3m

2log 3/ε
=

3m
3
ε log 2

=
3m
3
ε

= εm.

Theorem 4. The total number of corrupted items in a soft heap is at most εm.
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Proof. From Lemma 3, the total number of items in a soft heap with ranks k > t is at most

εm. Since only items above the threshold t can ever be corrupted by double fillings, the total

number of corrupted items is also at most εm.

2.3.3 Analysis of Fillings in Soft Heap Operations

Since fillings are an integral part of the analysis of soft heap operations, we first discuss the

total number of fillings performed. Since fillings performed at nodes with ranks k ≤ t differs

from those performed at ranks above t, we analyze them separately. We call these low fillings

and high fillings respectively.

In order to achieve an amortized runtime for soft heap operations, we charge extra units

for low fillings to pay for both the cost of high fillings and the cost of deletions. When an item

fills its parent, it is charged one additional unit. Once the item fills a node with rank t, it is

charged one final additional unit so that it now has an additional t units of charge. Since we

only charge extra for low fillings, any item has at most t units of charge, and an item with rank

k ≤ t has k units of charge. This process is illustrated in Figure 2.10.

Lemma 5. The total charge of all the low fillings performed is O(td+m).

Proof. To determine the total charge among all low fillings, we can take the number of nodes

with rank k ≤ t, the number of items a node has at rank k, and how much charge each item in

a node has been charged. Since we are only considering low fillings, we know s(k) = 1, leaving

us with a charge that amounts to

t∑
k=0

m

2k
· s(k) · k =

t∑
k=0

m

2k
· k = m

t∑
k=0

k

2k
.

The expression
t∑

k=0

k

2k
can be added to infinite terms to get an upper bound. This is

a famous arithmetico-geometric series that sums to 2. The Appendix contains proofs of this

series, as well as sums of other common geometric series. So the total charge among all low

fillings is at most 2m = O(m). Note that this only includes all charges of items currently in the

heap, and excludes the charges of items that exited the heap through delete-min operations.
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Figure 2.10: Distribution of Charges in a Soft Heap Tree

Since d items were deleted from the heap, they must have at most td total charge. Therefore,

the total charge of all low fillings is O(td+m).

Note that the charge among low fillings directly corresponds to total work done among

the low fillings.

Corollary 6. The total number of (or the total work done among) all low fillings is O(td+m).

Lemma 7. The total charge of all the nodes involved in high fillings is O(m).

Proof. From Lemma 3, the total number of items with rank k > t is at most εm. Each of

these has t units of charge. So the total charge is tεm, which is at most 3m = O(m) since

0 ≤ ε ≤ 1.

Let f(k) be the maximum number of fillings on a node of rank k. That is, among all

nodes of rank k, f(k) is the maximum number of times defill is called. We use the bounds

on f(k) to analyze the total number of high fillings. We also have f(0) = 1, which amounts
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to the work done by calling make-root to create a new rank 0 tree. Note that each time a

fill operation is called on a node x, exactly one node gets destroyed from x’s subtree. So,

the maximum number of times we can call fill on a node is upper bounded by the maximum

number of nodes a tree of rank k can have. The last call to fill destroys node x, after all

nodes in its subtree are destroyed.

Lemma 8. If k ≥ 1, we have f(k) ≤ 2f(k − 1). If k > t, and k is even, then f(k) ≤ f(k − 1).

Proof. Let g(k) be the maximum number of fillings on a node x of rank k, excluding fillings

when g(k) is the root. Since f(k) also includes fillings when x is the root, we have f(k) ≥ g(k).

Every time defill is called on x, we trigger a defill on one of the children of x. The

number of times we can call defill on x is therefore bounded by the number of times we

can call defill on both of the children of x. So f(k) ≤ 2g(k − 1) ≤ 2f(k − 1). If k > t,

and k is even, then one call to defill on x calls fill twice on x, which triggers two calls

to defill on the children of x. The only time defill calls fill once is when node x gets

destroyed before the second call. So 2f(k) − 1 ≤ 2g(k − 1) ≤ 2f(k − 1). Simplifying, we get

2f(k) ≤ 2g(k − 1) + 1 ≤ 2f(k − 1). So f(k) ≤ f(k − 1).

Lemma 9. If k ≤ t, then f(k) ≤ 2k. If k > t, then f(k) ≤ 2⌈(k+t)/2⌉.

Proof. It is easy to prove this by induction on k from Lemma 8, and we leave this as an exercise

for the reader. Intuitively, there is an exponential increase in f(k) for any k ≤ t. If k > t,

then there is an exponential increase in f(k) between every two levels above t. At level t, we

have f(t) ≤ 2t. If k > t, then there will be exponential increases (k − t)/2 times. So we have

f(k) ≤ 2t · 2
(k−t)

2 ≤ 2
(k+t)

2 .

Theorem 10. The total number of all high fillings is O(m).

Proof. From Lemmas 1 and 8, the total number of high fillings is
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∑
k>t

m

2k
· f(k) = m

∑
k>t

f(k)

2k

≤ m

[
f(t+ 1)

2t+1
+

f(t+ 2)

2t+2
+

f(t+ 3)

2t+3
+ ...

]
= m

∑
i≥1

(
f(t+ 2i− 1)

2t+2i−1
+

f(t+ 2i)

2t+2i

)

≤ m
∑
i≥1

(
2t+i

2t+2i−1
+

2t+i

2t+2i

)

=
m

2t

∑
i≥1

(
2t+i

22i−1
+

2t+i

22i

)
=

m

2t

∑
i≥1

(
1

22i−1
+

1

22i

)
· 2t+i

=
m

2t

∑
i≥1

(
2 + 1

22i

)
· 2t+i

=
2t · 3m

2t

∑
i≥1

1

2i · 2i
· 2i

= 3m
∑
i≥1

1

2i

= 3m

= O(m).

Note that the total work done over all high fillings does not depend on the number of

delete operations performed, and is solely based on the number of elements inserted. This is

because a node of rank k can only be filled f(k) times regardless of whether the insert or the

delete-min operation initiates the filling.

Theorem 11. The total work done over all fillings is O(td+m).

Proof. This follows from Corollary 6 and Theorem 10.
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2.3.4 Analysis of Soft Heap Operations

It is easy to determine that make-heap and find-min take O(1) in the worst case. For

delete-min, if the root x with minimum key is not emptied by deletion, it takes O(1) time

in the worst case. If x is emptied, however, then it gets filled, and the root list must be

reordered. If x has rank k, the time it takes to reorder the root list takes O(k) time. We show

that reordering the root list takes O(m) time over a sequence of m insert operations, and

therefore can be amortized.

Theorem 12. Excluding filling, the time spent doing reorderings is O(td + m). Therefore,

excluding filling, the total time spent on deletions is O(td+m).

Proof. If a tree of rank k is reordered, then it takes O(k) total time. More specifically, we need

to swap k+1 trees in the root list during each reordering. Each delete-min operation pays to

reorder t trees in the root list. This amounts to O(td) time. The remaining total work over all

delete-min operations for reordering can be computed using the bounds of f(k) developed

in Lemma 9 as well as Lemma 1;

∑
k>t

m

2k
· f(k) · (k − t) = m

∑
k>t

f(k)

2k
· (k − t)

≤ m
∑
i≥1

(
2t+i · (2i− 1)

2t+2i−1
+

2t+i · (2i)
2t+2i

)
=

m

2t

∑
i≥1

(
2i− 1

22i−1
+

2i

22i

)
· 2t+i

= m
∑
i≥1

(
4i− 2 + 2i

22i

)
· 2i

= m
∑
i≥1

2(3i− 1)

2i

≤ 6m
∑
i≥1

i

2i

= 12m

= O(m).
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Theorem 13. Excluding filling, the total time to perform insertions and melds is O(1) amor-

tized.

Proof. To show this, we use a potential function argument popularized by [20]. The potential

of a single heap is the number of trees plus the largest node rank, and the potential of multiple

heaps is the sum of each heap’s potential. Since insert is melding a heap with a single rank-0

tree, we analyze melding two heaps with h1 trees and h2 trees, with the largest rank trees r1

and r2, respectively. Without loss of generality, assume r1 ≤ r2. To meld these two trees, we

scan at most r1 trees on both heaps, and link at most k trees, and spend one extra unit of time

melding a null tree in the base case. So the total work done in melding two heaps is at most

r1 + k + 1, scaling constants appropriately. The amortized cost of the jth operation, denoted

aj , is the actual cost of the jth operation, denoted cj , plus the change in potential. We can

write this as

aj = cj + (ϕj − ϕj−1)

where ϕ represents our potential function. Note that ϕj is the potential that exists in

the data structure after performing the jth operation, while ϕj−1 is the potential before the jth

operation. Expanding cj and ϕj , we get

aj = r1 + k + 1 + (r2 + 1 + h1 + h2 − k − (h1 + h2 + r1 + r2)

= 2

= O(1).

Theorem 14. Starting with a empty heap, any sequence of soft heap operations that consist of

m insertions, and d deletions takes O(td+m) total time.

Proof. This follows from Theorems 11, 12, and 13.

Corollary 15. The amortized cost of insert is O(1), and the amortized cost of deletes is O(t).
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Work insert delete-min
make-root 1
low filling 1 t
high filling 1

reordering during delete-min 1 t

total O(1) O(t)

Table 2.2: Table of Distribution of Work Between insert and delete-min

Scaling work differently, we can think of operations insert and delete-min con-

tributing to the work in Table 2.2.

2.4 Comparison of Implementations

Chazelle’s original implementation [3] of the soft heap uses a collection of binomial heaps [21].

This implementation was simplified to use a collection of heap-ordered binary trees in both KZ

[10] and KZT [9]. However, where the KZT implementation keeps the trees in either findable or

meldable order, both the Chazelle and KZ implementations order the trees with respect to rank,

and augment each root with a suffix-min pointer. Given a tree x of rank k, suffix-min

points to the tree with the minimum key amongst trees with rank ≥ k. If this happens to be

x, then x simply points to itself. This allows the trees to always be in a meldable state, though

anytime the heap updates, all suffix-min pointers must be updated.

The root list in both the Chazelle and KZ implementations are doubly-linked, whereas

the KZT implementation is singly-linked. Using a doubly-linked root list is helpful when up-

dating suffix-min pointers, though it requires additional upkeep to maintain the root list

when inserting or removing a tree.

The Chazelle and KZ implementations have a “rank invariant” and “target size” for

nodes, respectively. Chazelle’s rank invariant requires that the number of children of a root

node is no smaller than half of its rank. When a rank invariant violation is detected, it “dis-

mantles” the tree, and melds its children back into the heap. A node’s target size in the KZ

implementation is the number of items a node should contain. Should the number of items

in a node drop below half of its target size, then items from its left child fill it, if possible.
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These invariants are used to bound the number of corrupted items in a soft heap, as well as

in analyzing the runtime complexities of the soft heap operations. Therefore, we feel that the

KZT implementation is the simplest in terms of both its implementation and the analysis.



Chapter 3

Soft Heap Applications

The main motivation for soft heaps is in computing a minimum spanning tree of a graph

[2]. Given a connected graph with n nodes and m weighted edges, Chazelle’s algorithm finds a

minimum spanning tree of the graph in only O(mα(m,n)) time, where α is the functional inverse

of the Ackermann function. Where the Ackermann function grows extraordinarily quickly, its

inverse grows very slowly over time. A discussion of this application is slightly beyond the scope

of this thesis, and interested readers can refer to [2] for more details. In this chapter, we discuss

other applications in which soft heaps can provide us with reasonably fast solutions.

3.1 Dynamic Percentile Maintenance

The soft heap can be used to obtain an item within some percentile. Suppose we have some

list of items, and we want to select an item within the 90th percentile. We can use a max soft

heap, in which the heap property is reversed, and we have a delete-max operation to pull

out the largest key in the heap. Note that corruption in a max soft heap means that some keys

may be artificially decreased. We set ε = 1
10 . After inserting all items into the heap, we can

delete a single item and know that it is within the 90th percentile.

Let us assume the worst case, where all items within the first εn items removed are

corrupted. If we let n = 100, then only εn = 10 items may be corrupted. Even if all ten items

in the 90th percentile have their keys decreased due to corruption, the largest item removed

will only be smaller than εn items, and therefore lies in the 90th percentile. (See Figure 3.1.)

36
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(a) All Corrupted Items Within 90th Percentile

(b) 90th Percentile is At Most εn Items Away from True Rank

Figure 3.1: Approximate Median: Worst Case Corruption

Since ε = O(1), both insert and delete-max operations run in O(1) amortized time. So

the entire algorithm takes only linear time.

3.2 Approximate Median Finding

Finding the approximate median of a list of items can be done similarly to the percentile

maintenance application. Using a min soft heap, suppose we set ε = 1
10 , then insert n items

into the heap. We then perform n
2 −

εn
2 deletions. Let x be the largest item amongst those

removed.

We know that x is larger than at least n
2 −

εn
2 elements. If all the corrupted items were

removed from the soft heap, then x’s rank is exactly n
2 −

εn
2 , as shown in Figure 3.2(a). If none

of the items removed were corrupted and still remained in the heap, then in the worst case, all

of their original keys could be smaller than x. (See Figure 3.2(b).) Therefore, there are at most

n
2 −

εn
2 + εn = n

2 + εn
2 items smaller than x. So x’s rank lies between n

2 −
εn
2 to n

2 + εn
2 . (See

Figure 3.2(c).) By choosing an arbitrarily small constant for ε, we can find a value of x closer

and closer to the true median. It can be seen that the entire algorithm takes linear time. This

algorithm to find an approximate median is clearly simpler than Floyd’s classic deterministic

selection algorithm [6].
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(a) Item x’s True Rank is n
2
− εn

2
if All Corrupted Items Exit Before x

(b) Each Corrupted Item May Have a True Rank Before x

(c) Item x’s True Rank Lies Within n
2
− εn

2
and n

2
+ εn

2

Figure 3.2: Finding the Approximate Median.
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3.3 Approximate Sorting

The application of approximate or near sorting is perhaps more obvious, given the nature of

the soft heap. There are two different ways in which we can define “near-sortedness”. One

is based on inversions, and the other based on the bounds on the ranks of each element. We

discuss these in this section.

3.3.1 Near-sortedness Based on Inversions

With some error rate ε, insert n items into the heap, then delete all n items. When an item

x with rank k is deleted from the heap, there may be at most εn items with smaller keys

corrupted, that are removed after x. So, item x can only have at most Ik = εn inversions.

Adding up over all items x, the total number of inversions in the array is at most

I =
n∑

k>0

Ik =
n∑

k>0

εn = εn
n∑

k>0

1 = εn · n = εn2.

3.3.2 Near-sortedness Based on Ranks

Another version of near-sortedness ensures that each item x appears in the output array within

certain bounds of its true rank. For any value of ε, we can perform n insertions followed by n

deletions. Now, we divide the output array into a series of l blocks, each containing ⌈2εn⌉, so

that n = ⌈2εn⌉l. The last block may contain fewer items. Let the blocks be labeled B1, . . . , Bl,

and let xi be the smallest original key amongst uncorrupted items in block Bi.

Since only at most εn items can be corrupted, each block contains at least εn uncor-

rupted items. Therefore, the xi’s, where 1 ≤ i ≤ l, are in sorted order. (See Figure 3.3(a).)

Now we scan through all the items in the array, and place each item e in its appropriate block.

Note that we only have to move uncorrupted items to their correct blocks. Let ei be an item

in block Bi. If ei is smaller than xi, it is in the incorrect block. Scan the blocks before Bi until

an xj is found such that ei ≥ xj , where 1 ≤ j < i. Then ei belongs to block bj . (See Figure

3.3(b).) Since only up to εn items may be corrupted, this entire process takes O(εnl) = O(n)

time.
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(a) Output of a Soft Heap Divided into l Blocks

(b) Each Corrupted Item Moves to Appropriate Block

(c) Each Item is at Most 3εn Items from its True Rank

Figure 3.3: Moving Corrupted Items to their Correct Block
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Once all items are in their correct block, we have our near-sorted array. We know that

each block starts with ⌈2εn⌉ items, and at most εn corrupted items could move into a block.

So the largest block has at most 3εn items. Therefore, each item in the list is now guaranteed

to be within 3εn items from its true rank. (See Figure 3.3(c).)



Chapter 4

Visualizing Soft Heaps

4.1 The Visual Tool

We have written a visualization library in TypeScript [15], which builds on top of the Cy-

toscape.js library [7]. Cytoscape.js allows developers to visualize graphs using JavaScript. Our

visual tool provides functions that wrap some of Cytoscape’s features, making graphs (and

therefore data structures like the soft heap) easier to visualize. It also adds new functionality

for a better animation experience. TypeScript adds type syntax to JavaScript, and it com-

piles into JavaScript. Our application is hosted on the servers of the Department of Computer

Science at Appalachian State University [14], and the source code can be found on GitHub [13].

4.1.1 Cytoscape

Many data structures and algorithms can be visualized using graphs, which is why we choose

to build on top of the Cytoscape graph visualization library. To visualize a graph, Cytoscape

requires some container HTML element. It will then add the necessary components to visualize

a graph in that element. Once a Cytoscape instance has been created, nodes and edges can

then be added, manipulated, or removed.

A Cytoscape instance contains a list of elements, and a list of styles that can be used

to modify how elements appear. Elements in Cytoscape are organized into a group of edges or

a group of nodes. They also may contain a data attribute, which we use to hold element IDs,

any label associated with the element, and any other data we may need. Elements may also

42
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Figure 4.1: A Class Diagram of AnimatedElement, AnimatedNode, and AnimatedEdge

contain classes, which are used to denote whether they should be styled in a certain way. Node

elements have positions, denoted by x and y coordinates, and edge elements have source and

target nodes.

By default, Cytoscape does not perform any animations. Elements will simply appear,

change, or disappear the instant the data model changes. It does, however, provide some

animation features that we leverage in our visual tool, though we have found it easier in some

cases to provide our own implementations of animation features. In order to make some of these

implementations work, we choose to maintain a data model separate from that of a Cytoscape

instance. We go into more detail about this in Section 4.1.3.

4.1.2 Animated Elements

Our data model contains several classes, the three primary ones being AnimatedElement,

AnimatedNode, and AnimatedEdge. Both AnimatedNode and AnimatedEdge extend

AnimatedElement. A basic class diagram containing key attributes of each class can be seen

in Figure 4.1. Each element contains the group it belongs to, which helps separate nodes and

edges in our data model. They also contain an ID that matches the corresponding Cytoscape

element’s ID. AnimatedElements have a reference to their corresponding element in the

Cytoscape data model. This is primarily used to check if an element in our data model exists
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in Cytoscape’s data model. It also allows quick access to the Cytoscape element so that we

may update it in the visualization.

AnimatedNodes contain a label which we use to represent some data about that node

in the visualization, and its position in our data model. AnimatedEdges contain the IDs of

the source and target nodes of the edge in our data model.

4.1.3 The Animator

The core component of our animations is the Animator. An Animator maintains a single

Cytoscape instance by default, as well as its own data model of AnimatedElements. An

animator simply initializes a Cytoscape instance with an empty list of elements and a predefined

list of styles. Animators also globally maintain an animation duration and an animation delay,

both in milliseconds. When an animation runs, its duration is not determined by the animation

itself, but the global duration once the animation begins. The same is true for animation

delay. These values may be changed at any time, allowing the visualization to be sped up or

slowed down. Figure 4.2 may be referenced to help understand how the main components of

Animator work together as we continue discussing its features.

Figure 4.2: A Flow Diagram of the Visualization Tool
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Animation Queue

One of the most notable aspects of Animators is the animation queue. Performing animations

sequentially via Cytoscape directly is not user-friendly. We choose to implement a queue of

animations for animators rather than using Cytoscape’s animation queue. When an animation

is queued, we first check if the queue is empty. If so, we simply begin playing it. Otherwise, we

add it to the queue. Once an animation is finished, and the time for the animation delay has

elapsed, the next animation (if there is one) is dequeued and played.

The implementation of the animation queue is why we implemented a separate data

model from Cytoscape’s data model. When an AnimatedElement is created via an animator,

it queues an animation to add its corresponding element to Cytoscape so that it is only added

once all prior animations have completed. Future animations may interact with that element,

and they may do so before that element exists in Cytoscape. In order to prevent stale or

non-existent data from being used for future animations, we keep the information up-to-date

in AnimatedElements as animations are created and queued. We can then access up-to-date

data in an AnimatedElement to create accurate animations. Once the animation queue is

empty, the state of both the animator’s data model and that of its Cytoscape instance will be

equivalent.

Animator Events

The animation queue is managed via several event listeners, which are registered with an

AnimatorEventBus. An AnimatorEventBus simply maintains a dictionary of events and

event listeners, and provides functions to add or remove event listeners, and to emit events.

Animator emits a few queue-related events. It listens for these events to control the flow of

animations. These are listed in Table 4.1.

Animator also emits and handles a few playback-related events. The pause(),

resume(), and step() functions are provided to affect animation playback. Allowing a

user to manipulate playback gives them time to process animations and better understand

what is being shown. When an Animator emits an event, it first checks if it is paused. If so,

the Animator catches and stores the event emitted, rather than triggering it in its event bus.



46

Event When Event is Triggered How Animator Handles Event

animationQueued
When an animation is added to
the queue.

If the newly queued animation
can be played, play it.

animationStarted
When an animation begins play-
ing.

Set a flag indicating the
Animator is busy.

animationFinished When an animation completes.

After the delay has elapsed, set a
flag indicating the Animator is
idling, and attempt to play an-
other animation.

animationPaused
When the pause() function is
called.

Set a flag indicating the
Animator is paused.

animationResumed
When the resume() function is
called.

Set a flag indicating the
Animator is not paused.

animationStep
When the step() function is
called and the Animator is
paused.

Animator does not listen to
this event.

Table 4.1: Animator Events, when they are thrown, and how Animator handles them

Figure 4.3: A Flow Diagram of Animator’s Playback Control

Since the flow of animations is maintained via events, this is necessary to pause the visualiza-

tion. When the Animator resumes, it then releases the stored event, triggering it in the event

bus, and resuming the animation. If the Animator is paused, then the step() function can

be called to trigger the stored event, while keeping the Animator paused. This lets users play

animations one step at a time. These events are also listed in Table 4.1, and Figure 4.3 shows

a simple flow diagram of playback control.
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Element Manipulation

Animator has many functions that allow for the addition, removal, and manipulation of ele-

ments. Some of these are straightforward, such as the addition and removal of elements. When

adding an element, create an AnimatedNode or AnimatedEdge with the given data, then

create and queue an Animation to add that element to the Cytoscape instance. The added

element is returned so that it may be referenced by the developer when needed. Having access

to element IDs is useful for animating already-existing elements. When removing an element,

create and queue an Animation to remove it from both the Animator and the Cytoscape

instance. The element is removed from both models during the animation to allow any prior an-

imations to continue to reference the AnimatedElement. This is important when animations

need access to the Cytoscape element reference stored in an AnimatedElement.

Elements can be manipulated by movement or style changes. Animator may move

a single node or multiple nodes at a time, and it may do so by either moving them to given

positions or by a given amount. The Animator can move multiple nodes to different positions

by creating multiple Cytoscape animations, only emitting an animationFinished event once

every Cytoscape animation has completed. Animator can also swap node positions, which we

detail in Section 4.2. Style changes include color changes, as well as updating the label of a

node or annotating a node. These update the Animator’s data model immediately, and queue

an animation to update the visualization. Edges behave in largely the same way, though we do

not label or annotate edges. When moving an edge, we simply change its source node and/or

its target node.

Snapshots

An Animator may take snapshots of the visualization at any time. This can be used to show

the visualization at various stages, which can be useful in understanding data structures and

algorithms. A snapshot may be taken using the takeSnapshot function. An animation is

then queued. When the animation is played, a copy of the Cytoscape data model is created,

and stored in a list of snapshots maintained by the Animator. Queuing this function allows

snapshots to be taken at various points during visualization. Snapshots are a special animation
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Figure 4.4: A Flow Diagram of Animator’s Snapshot Feature

in that there is no delay between a snapshot being taken and the next animation beginning.

Calling restoreSnapshot will load a snapshot. It takes either an index in the snapshot list

or a Snapshot object as an argument. It then loads the Animator’s history container with

the Cytoscape elements. The history container is a container element in which a Cytoscape

instance has been initialized. It is optionally provided to the Animator constructor. The

history container may or may not be the same container element in which the main visualization

occurs, but for stability, it is best to use a separate container element. A snapshot may also

be taken instantly, rather than queued as an animation. The getCurrentSnapshot function

takes a snapshot of the visualization at the moment it is called, and returns it. Figure 4.4 shows

the flow of taking and viewing snapshots.

4.2 Visualizing the Soft Heap

4.2.1 The Webpage

The soft heap visualization contains several key elements, which include the control panel,

the sidebar, and the visualization. The control panel is where we provide buttons to input

an error rate, perform soft heap operations, and manipulate playback. Initially, the buttons

for operations are hidden. Once a valid error rate is provided, they appear. We provide

buttons for the insert, delete-min, and find-min operations. We do to not provide

meld visualizations due to constraints of the visual tool, but meld can still be understood to a

degree by performing insertions. The visualization begins in a “play” state, although the user
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(a) User May Enter an Error Rate

(b) Once Entered, User May Call make-heap

(c) The Remaining Operations Are Made Available

Figure 4.5: Control Panel Overview

may pause the animation at any time. When the visualization is paused, the user may step

through the visualization one animation at a time. They may also slow the visualization by

halving its speed, or speed it up by doubling its speed. Once given an error rate, an instance

of SoftHeap is created and given an Animator.

4.2.2 The Soft Heap

To visualize the soft heap, we first need to be able to reference visual elements from within

the soft heap. The Vertex class represents a node in the soft heap (Node is already a class

in JavaScript). A Vertex contains all the same data that is mentioned in Chapter 2, how-

ever, we augment that with two things: a corrupted flag, denoting if the node contains

corrupted elements; and an elements object. The elements object contains references to

AnimatedNode, and AnimatedEdges for the left and right nodes, and for the next tree in

the root list. Also contained in elements is an AnimatedTree, which provides functions to

show nodes in a tree-like fashion, and to get the visual boundaries of a tree.

As items are inserted or deleted, we show the status of the operation within the visual-

ization. (See Figure 4.6.) For example, in insert, when a specific item is being inserted, it is

highlighted within the visualization status to make it easier to determine where the visualization

is amongst all insertions.
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(a) Item with Key 43 Being Inserted

Figure 4.6: Visualization Status

When an item is inserted into the soft heap, it is first made into a root node. When

creating a root node, we first shift all existing nodes in the visualization by some amount,

roughly the width of a node. This creates room for the new node to appear. We add the node

via the Animator with its key as the label, and at a position relative to the first tree in the

root list. We also provide the node with relevant data that will be used in the visualization,

like its key, rank, and set. We then highlight the node, which temporarily changes its style to

make it more noticeable to the user. The highlight is an animation that gets queued in the

Animator. Importantly, we add a class to this new node. The class is the node’s ID. We

discuss this more when discussing how we visualize fill. Lastly, we make an AnimatedTree

out of the node. The animation process is shown in Figure 4.7.

When linking two trees, we place a new node above both trees, adding edges from the

new node to the root of the trees, making them children of the new node. We associate the

nodes in both trees with the new node by adding a class of the new node’s ID. We then add

both trees’ AnimatedTrees as children of the new node’s AnimatedTree. We apply a tree
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(a) A Single-Node Heap (b) The Node Shifts Right (c) New Node is Added

Figure 4.7: The Process of Adding An Item to the Soft Heap Visualization

(a) Two Trees with Same
Rank

(b) A New Node Links Both Trees

Figure 4.8: The Process of Linking Trees in the Soft Heap Visualization

layout to the newly formed tree before calling defill. This linking process is shown in Figure

4.8. The linking node then gets filled. In fill, if the children need to be swapped, we call

the swapNodes() function. Given two nodes x and y, swapNodes() first gets all nodes in

both subtrees (all nodes with the class x.id or y.id), calculates the difference in positions of x

and y, and moves the nodes simultaneously (x nodes in one direction, y nodes in the opposite

direction). This is the primary benefit of classing nodes with what tree they belong to; it is

easier to find and manipulate all nodes that may be associated with a particular node. Once

the nodes are swapped, we begin filling the linking node. We update the node’s label to that

of its left child. If the left child was a leaf, we remove it from the visualization. Otherwise,

recursively fill the left child. This filling process is illustrated in Figure 4.9.

Once a tree is linked, the root list must be reordered. When inserting, we simply call

rank-swap and key-swap. The visualizations for both operations are the same. We first

remove any edges from the roots of the trees being swapped, then swap the trees. Once the

trees are swapped, we add new edges to reflect the recently changed next pointers for the

swapped roots. When swapping trees, it may be the case that they either overlap or have a
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(a) A Linking Node Begins to
Fill

(b) Its Left Child (with Key 5)
Fills it

(c) The Now Empty Node Be-
gins to Fill

(d) The Node is Filled by its
Child

(e) The Leaf Node is Removed,
and the Layout Updated

Figure 4.9: The Process of Filling Nodes in the Soft Heap Visualization
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(a) Item with Key 24 is Inserted, Remove
Edges from Tree with Conflicting Rank

(b) First Two Trees Swap, and New Edges are
Added

(c) Trees Link to Form a New Tree (d) Rank Swap to Check For Rank Conflicts

(e) Key Swap Since There Are No Rank
Conflicts

Figure 4.10: Converting to Meldable Order to Insert an Item in the Soft Heap Visualization

large distance between them. To fix this, once the trees have been swapped, we use a function

specific to animated soft heaps called tightenTrees, which simply calculates the bounds of

the trees, and shifts them so that there is some short distance between the trees. The swapping

process is shown in Figures 4.10 and 4.11. The process of reordering the entire root list is

much the same, as it relies heavily on rank-swap and key-swap. The reorder function

ensures tree edges are tightened, and once the recursive operation of reorder is complete, it

updates edges in the visualization by removing existing edges, and then adding new ones when

necessary.

Showing Corruption

To more easily and quickly determine if a node contains corrupted elements, each node is

augmented with a corrupted flag. We set this flag when a double-even filling occurs in
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(a) Findable Order Needs Restored After
Linking Trees

(b) Remove Edges from Tree with Mini-
mum Key (Key 4)

(c) Swap the Minimum Tree with the
Newly Linked Tree, Adding Edges

Figure 4.11: Converting to Findable Order After Inserting an Item in the Soft Heap Visualiza-
tion.

defill. If a node contains corrupted elements, we choose to show that by changing the color

of the node to differentiate it. We also add an annotation to the node that shows its items. Since

Cytoscape allows just a single label for each element, we add what Cytoscape calls a compound

node. Such a node is meant to contain other nodes in the graph. We add the corrupted soft

heap node to a compound node. This compound node has its own label containing a corrupted

node’s items. Anytime the set of a corrupted node changes, so does the annotation. This

animation is shown in Figure 4.12. It may be the case that when a corrupted node empties and

fills with the set of its left child, the left child contains no corrupted elements. We simply revert

the node to its non-corrupted state by changing the node color back to the original color, and

removing the set annotation.

Soft Heap Snapshots

At the end of each heap update operation (insert and delete-min), we take a snapshot of

the heap. Snapshots are shown under the “History” tab in the sidebar. We show the operation

performed, and the key of the target item (the item inserted or deleted). This can be customized

by optionally passing a string to the takeSnapshot() function. The user may double-click
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(a) Filling an Even Rank Node > t (b) The First Filling is Complete

(c) Node with Key 5 Fills the Root (d) The Root Changes Color and Anno-
tates its Set

(e) The Second Filling Completes

Figure 4.12: Showing Corruption in the Soft Heap Visualization



56

a snapshot entry to view the state of the soft heap when the snapshot was taken. To show

the snapshot, we hide the primary, interactive visualization container and show in its place the

snapshot container. We create a second Cytoscape instance in this container and simply load

the state of the snapshot into it. Doing this prevents any changes to the current visualization.

We choose to disable any operations that could run animations until the user chooses to view

the original visualization again. At that point we hide the snapshot container, show the original

one, and re-enable operations. An example of viewing a snapshot is shown in Figure 4.13.

(a) Snapshots for Inserting 4 and 5, Before Inserting 1

(b) Snapshots for Each Insertion, After Inserting 1

Figure 4.13: Viewing Snapshots in the Soft Heap Visualization
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(c) A Snapshot is Added When 1 is Deleted

(d) Double-clicking “insert 5” Shows the State After Inserting 5

(e) Clicking “Reset to Current State” Hides the Snapshot

Figure 4.13: Viewing Snapshots in the Soft Heap Visualization Cont.
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4.3 Visualizing Soft Heap Applications

We provide visualizations of three soft heap applications: dynamic percentile maintenance,

approximate median finding, and approximate sorting. To visualize dynamic percentile main-

tenance, we first create a max soft heap. It is largely the same as described in the previous

section, except we change key-swap to place the tree with the maximum key at the beginning

of the root list, and we change fill to swap child nodes if the key of the right child is greater

than the key of the left child.

The webpage is very similar; it contains a control panel, a sidebar, and the visualization.

In the control panel, we only show buttons for insert and delete-max, as well as playback

buttons. We remove the ability to view snapshots and the ability to set an error rate. The error

rate is set to 1
10 when the page initializes. The “insert” button generates one-hundred random

numbers between one and one-hundred, and inserts them in random order into the soft heap.

In the sidebar, we show the items sorted, and highlight the 90th-percentile item. Once all the

items are inserted, performing a single delete-max will return an item in the 90th percentile,

highlighted in red. The visualization can be seen in Figure 4.14.

Visualizing approximate median finding is done in much the same way as percentile

maintenance. The error rate is also set to 1
10 upon initialization, and we only provide an “insert”

and a “delete” button. Another list of one-hundred randomly generated items is inserted into

the heap, and the sorted list appears in the sidebar with the inner 20% of items highlighted

in gray. When “delete” is pressed, 45 items are removed. The largest removed item is the

approximate median, and is highlighted in the sidebar. This visualization is shown in Figure

4.15.

To visualize approximate sorting (shown in Figure 4.16), the error rate is set to 1
2 . We

can adequately show that items exit the heap nearly sorted with fewer items, so we increase

the error rate, which in turn decreases the threshold at which corruption is allowed to occur.

Once all items are inserted, all items are then deleted. The order in which items exit is shown

above the visualization, and if an item is corrupted, we highlight it.
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(f) All Items Inserted, 90th Percentile Highlighted in Black

(g) Deleting the Maximum Key Returns an Item (with Key 99) in the 90th Percentile

Figure 4.14: Visualizing Dynamic Percentile Maintenance
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(a) All Items Inserted, Items within 10% of True Median Highlighted in Gray

(b) Deleting Fourty-Five Items, the Largest Item Deleted (65) Highlighted

Figure 4.15: Visualizing Approximate Median Finding
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(a) All Items Inserted

(b) After Deleting All Items, Each Corrupted Item is Highlighted

Figure 4.16: Visualizing Approximate Sorting



Chapter 5

Conclusion

The soft heap is a simple, yet powerful data structure that can be used in many applications.

Specifically, they can be used in the fastest deterministic minimum spanning tree algorithm

[2], and can be used in dynamic maintenance of percentiles, finding approximate medians, and

approximate sorting [3]. Chazelle’s original implementation involved a collection of binomial

trees [3], and these were simplified to use a collection of binary trees [10] [9]. In this thesis,

we provided a description of the implementation of Kaplan, Zwick, and Tarjan, as well as their

analysis for completeness. We hope that our presentation is more intuitive and accessible. We

also provide a visualization tool that can visualize the inner workings of the soft heap.

We propose a slight modification to the soft heap, to do only single fillings during

delete-min operations. This ensures that no new items are corrupted during deletion, and

allows us to use the soft heap as a black box, guaranteeing that no more than εn items may

become corrupted. The modified soft heap is available in several different programming lan-

guages [12], so that it may be used by others as a black box. The visual tool also visualizes

three applications of soft heaps. Our tool is publicly available [13], and may be extended to

visualize other data structures and algorithms.

Our tool is in its first version, and can be improved in its performance, as well as adding

in new features. First and foremost, removing the tool’s reliance on the Cytoscape library, which

would allow us to create and manage visual elements directly. This would eliminate the need

for separate (yet nearly structurally equivalent) data models to show a single visualization. The

tool could continue to use its animation queue to perform animations sequentially, though it
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would be interesting to see how JavaScript Promises (or the like) could be used to achieve a

similar effect. This would also give a developer more flexibility in allowing multiple animations

to play asynchronously, if desired. We also like to explore having multiple data structures in

the same visualization, and having the visualization. This would be very useful in visualizing

the soft heap’s meld operation.

If the visual tool were able to directly manage its visual elements, it would also be more

effective at managing animation history, and loading elements directly into the visualization

without animating them. This would allow us to “load”, and “save” animations, in case we are

working to showcase a more complex algorithm using them. It would also allow us to roll back

the animation to a particular point, and perform different operations from that point forward.

Due to the technical intricacies of using separate data models, we did not fully implement either

feature. Though, the visual tool would feel more complete and effective with these features.

Being able to load elements instantly would make some visualizations better, specifically those

like the visualizations of soft heap applications. It would be natural to use the existing soft heap

visualization as part of a larger visualization of Chazelle’s minimum spanning tree algorithm

[2]. It would also be interesting to see how we can easily extend this tool to visualize and

animate other advanced data structures.
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Appendix

Proof of Lemma 3 and Theorem 10 use the following sum of an infintie geometric series.

Theorem A1.
∑
i≥1

1

2i
= 1.

Proof. We can show that this geometric series sums to 1 by using the “shifting sums” technique.

Let x =
∑
i≥1

1

2i
= 1.

x =
∑
i≥1

1

2i
= 1

=
1

2
+

1

4
+

1

8
+ . . . (5.1)

Dividing both sides by 2, we get

x

2
=

1

4
+

1

8
+

1

16
+ . . . (5.2)

Subtracting Equation 5.2 from 5.1 cancels all terms in the right hand side except 1
2 . So

we get

x− x

2
=

1

2

=⇒ x

2
=

1

2
=⇒ x = 1.

Proof of Lemma 5 and Theorem 12 use the following sum of an infinite arithmetico-
geometric series.

Theorem A2.
∑
i≥1

i

2i
= 2.

Proof. We can prove this by applying the shifting sums technique twice. Let x =
∑
i≥1

i

2i
.
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x =
∑
i≥1

i

2i

=
1

21
+

2

22
+ . . .

x

2
=

1

22
+

2

23
+ . . .

x− x

2
=

1

21
+

1

22
+

1

23
+ . . .

=
∑
i≥1

1

2i

= 1 (from Theorem A1)

=⇒ x = 2.
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